Phosphorylation of Vasodilator-Stimulated Phosphoprotein (VASP) Dampens Hepatic Ischemia-Reperfusion Injury
نویسندگان
چکیده
Recent work has demonstrated that the formation of platelet neutrophil complexes (PNCs) affects inflammatory tissue injury. Vasodilator-stimulated phosphoprotein (VASP) is crucially involved into the control of PNC formation and myocardial reperfusion injury. Given the clinical importance of hepatic IR injury we pursued the role of VASP during hepatic ischemia followed by reperfusion. We report here that VASP(-/-) animals demonstrate reduced hepatic IR injury compared to wildtype (WT) controls. This correlated with serum levels of lactate dehydrogenase (LDH), aspartate (AST) and alanine (ALT) aminotransferase and the presence of PNCs within ischemic hepatic tissue and could be confirmed using repression of VASP through siRNA. In studies employing bone marrow chimeric mice we identified hematopoietic VASP to be of crucial importance for the extent of hepatic injury. Phosphorylation of VASP on Ser(153) through Prostaglandin E1 or on Ser(235) through atrial natriuretic peptide resulted in a significant reduction of hepatic IR injury. This was associated with a reduced presence of PNCs in ischemic hepatic tissue. Taken together, these studies identified VASP and VASP phosphorylation as crucial target for future hepatoprotective strategies.
منابع مشابه
Phosphorylation of vasodilator-stimulated phosphoprotein prevents platelet-neutrophil complex formation and dampens myocardial ischemia-reperfusion injury.
BACKGROUND Recent work has suggested that the formation of platelet-neutrophil complexes (PNCs) aggravates the severity of inflammatory tissue injury. Given the importance of vasodilator-stimulated phosphoprotein (VASP) for platelet function, we pursued the role of VASP on the formation of PNCs and its impact on the extent of myocardial ischemia-reperfusion (IR) injury. METHODS AND RESULTS In...
متن کاملVASP Increases Hepatic Fatty Acid Oxidation by Activating AMPK in Mice
Activation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP's effects are mediated by AMPK. We show that disrupti...
متن کاملScutellarin Reduces Endothelium Dysfunction through the PKG-I Pathway
Purpose. In this report, we investigated the protective mechanism of scutellarin (SCU) in vitro and in vivo which could be involved in endothelial cGMP-dependent protein kinase (PKG), vasodilator stimulated phosphoprotein (VASP) pathway, and vascular endothelium dysfunction (EtD). Method. Human brain microvascular endothelial cells (HBMECs) with hypoxia reoxygenation (HR) treatment and rats wit...
متن کاملScutellarin’s Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα
Scutellarin (SCU), a flavonoid glycoside compound, has been successfully used in clinic for treatment of ischemic diseases in China. In this report, we checked the effects of SCU on endothelium dysfunction (ED) of coronary artery (CA) against myocardial ischemia reperfusion (MIR) injury in vivo. The involvement of PKG-Iα was further studied using cultured endothelial cells subjected to hypoxia ...
متن کاملAlterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use
BACKGROUND Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inf...
متن کامل